Задачи по физике воздух лед

Задачи по физике воздух лед

2017-01-06
В сосуде с водой плавает кусок льда, внутри которого находится кусок свинца (рис.). Изменится ли уровень воды в сосуде, когда лед растает? Что будет, если внутри льда находится не свинец, а пузырьки воздуха?

Так как кусок льда со свинцом имеет массу, большую, чем кусок чистого льда того же объема, то он глубже погружен в воду, чем чистый кусок льда, и вытесняет больший объем воды, чем тот, который займет вода, образовавшаяся при таянии льда (см. задачу 1854). Поэтому, когда лед растает, уровень воды понизится (кусок свинца при этом упадет на дно, но его объем остается прежним, и он непосредственно уровня воды не изменяет).

При наличии пузырьков воздуха лед имеет массу, меньшую, чем сплошной кусок льда того же объема, и, следовательно, погружен на меньшую глубину, чем сплошной кусок льда того же объема. Однако поскольку массой воздуха можно пренебречь (по сравнению с массой, льда), то кусок льда по-прежнему вытесняет воду, масса которой равна массе льда, и когда лед растает, уровень жидкости не изменится (когда лед растает, пузырьки подымутся кверху и уйдут из воды). Поэтому случай с пузырьками воздуха не является обратным случаю льда с куском свинца.

Источник

Задачи по физике воздух лед

Содержание этапа решения

Оценка этапа в баллах

Водяной пар в воздухе становится насыщенным при температуре 27 °C. Следовательно, давление р водяного пара в воздухе равно давлению насыщенного пара при температуре 27 °C, из таблицы 36 гПа.

Читайте также:  Будут падать снег ночь

Абсолютная влажность равна плотности водяных паров. Первое состояние: насыщенный пар при 27 °C. Второе: пар при 29 °C. Пар охлаждается от 29 до 27 °C изобарически, поэтому

Пусть — абсолютная влажность воздуха при температуре 29 °C равно, а — плотность насыщенных водяных паров при этой температуре. Относительную влажность можно рассчитать как отношение откуда

Ответ: 25,6 г/м 3 .

Давление насыщенного водяного пара при температуре 29 °C равно 40 гПа. Относительной влажностью воздуха называется отношение:

Конденсация паров воды происходит при условии равенства давления водяного пара, имеющегося в воздухе, давлению насыщенного водяного пара при данной температуре воздуха. Давление насыщенного водяного пара зависит от температуры. Поэтому при разной плотности водяного пара в воздухе температура начала конденсации пара (точка росы) оказывается различной.

Приведённое решение неверно. В условии нигде не сказано, что можно считать водяной пар идеальным газом, а стало быть уравнение Менделеева-Клайперона даёт неточный результат. Относительная влажность по другому определяется через отношение абсолютной влажности к плотности водяных паров при данной температуре, следовательно мы можем взять значение для абсолютной влажности при 29 градусах непосредственно из таблицы — она равна плотности насыщенных паров при 27 градусах, т.е. 25,8 г/куб. м.

Немного изменили решение. Но при изменении температуры при постоянном давлении меняется (хоть и незначительно) относительная влажность. Поэтому нельзя сказать, что искомая относительная влажность равна плотности насыщенного парам при 27 °С. Составителям следовало бы взять разницу температур побольше.

В калориметре находился 1 кг льда. Чему равна первоначальная температура льда, если после добавления в калориметр 20 г воды, имеющей температуру 20 °C, в калориметре установилось тепловое равновесие при ? Теплообменом с окружающей средой и теплоемкостью калориметра пренебречь.

Количество теплоты, необходимое для нагрева льда, находящегося в калориметре, до температуры t:

Количество теплоты, отдаваемое водой при охлаждении ее до :

Количество теплоты, выделяющееся при отвердевании воды при :

Количество теплоты, вьделяющееся при охлаждении льда, полученного из воды, до температуры t:

Уравнение теплового баланса:

Объединяя (1)—(5), получаем:

Ответ:

Почему количество теплоты, выделяющееся при отвердевании воды равно Q=Lm (L- лямбда)? Если я не ошибаюсь, то отвердевание это кристаллизация и формула будет Q=-Lm.

Знак не имеет особого значения. Просто нужно писать данное слагаемое в «правильную часть» теплового баланса, то есть правильно указывать, куда переходит данная энергия.

В калориметре находился лед при температуре Какой была масса льда, если после добавления в калориметр воды, имеющей температуру и установления теплового равновесия температура содержимого калориметра оказалась равной причем в калориметре была только вода?

Количество теплоты, полученное при нагреве льда, находящегося в калориметре, до температуры : (1).

Количество теплоты, полученное льдом при его таянии при (2).

Количество теплоты, отданное водой при охлаждении её до (3).

Уравнение теплового баланса: (4).

Объединяя (1)—(4), получаем:

Ответ:

В калориметре находился 1 кг льда. Какой была температура льда, если после добавления в калориметр 15 г воды, имеющей температуру 20 °С, в калориметре установилось тепловое равновесие при –2 °С? Теплообменом с окружающей средой и теплоемкостью калориметра пренебречь.

Количество теплоты, необходимое для нагревания льда, находящегося в калориметре, до температуры t:

(1)

Количество теплоты, отдаваемое водой при охлаждении её до 0 °С:

(2)

Количество теплоты, выделяющейся при отвердевании воды при 0 °С:

(3)

Количество теплоты, выделяющейся при охлаждении льда, полученного из воды, до температуры t:

(4)

Уравнение теплового баланса:

(5)

Объединяя формулы (1)—(5), получаем

Ответ:

Почему в уравнении (3) удельная теплота плавления взята с плюсом? Т.к. идёт процесс, обратный плавлению, она должна быть с минусом.

Я бы Вам посоветовал забыть про этот знак минус в формуле, лучше все считать положительным, просто понимать, куда перетекает тепло. Писать тепловой баланс в виде: .

Это полностью эквивалентно балансу в виде

А почему в уравнении (2) , при расчете температуры мы вычитаем 0 , не -2 ?

То что происходит с 15 г воды можно представить в виде трёх процессов: а) вода охлаждается до 0 °С, б) замерзает (превращается в лёд) и в) лёд охлаждается до –2 °С.

Уравнение (2) описывает процесс (а).

В 2012 году зима в Подмосковье была очень холодной, и приходилось использовать системы отопления дачных домов на полную мощность. В одном из них установлено газовое отопительное оборудование с тепловой мощностью 17,5 кВт и КПД 85%, работающее на природном газе — метане Сколько пришлось заплатить за газ хозяевам дома после месяца (30 дней) отопления в максимальном режиме? Цена газа составляла на этот период 3 рубля 30 копеек за 1 кубометр газа, удельная теплота сгорания метана 50,4 МДж/кг. Можно считать, что объём потреблённого газа измеряется счётчиком при нормальных условиях. Ответ округлите до десятков рублей.

Метан имеет молярную массу Согласно уравнению Клапейрона — Менделеева, плотность метана при нормальных условиях (температура давление ) равна

Удельная теплота сгорания метана в пересчёте на кубометр газа равна КПД газового отопительного оборудования а тепловая мощность установки поэтому мощность, выделяющаяся при сгорании газа, равна

Таким образом, за месяц (30 суток по 86400 секунд) потребление энергии составит

Объём потребленного за месяц газа будет равен а его стоимость равна

Ответ: хозяевам пришлось заплатить за месяц отопления дома газом 4960 рублей.

Источник

Задачи по физике воздух лед

Задача № 1. Какое количество энергии требуется для обращения воды массой 150 г в пар при температуре 100 °С?

Задача № 2. Какое количество энергии требуется для превращения воды массой 2 кг, взятой при температуре 20 °С, в пар?

Задача № 3. Какое количество энергии нужно затратить, чтобы воду массой 5 кг, взятую при температуре 0 °С, довести до кипения и испарить её?

Задача № 4. Какую энергию нужно затратить, чтобы расплавить кусок свинца массой 8 кг, взятый при температуре 27 °С?

Задача № 5. Какое количество энергии требуется для превращения в пар спирта массой 200 г, взятого при температуре 18 °С?

Задача № 6. Какое количество энергии требуется для превращения в пар воды массой 5 кг, взятой при температуре 20 °С?

Задача № 7. Какое количество теплоты необходимо сообщить воде массой 10 г, взятой при температуре 0 °С, для того, чтобы нагреть ее до температуры кипения и испарить?

Задача № 8. Из чайника выкипела вода объемом 0,5 л, начальная температура которой была равна 10 °С. Какое количество теплоты оказалось излишне затраченным?

Задача № 9. Кофейник вместимостью 1,2 л заполнили водой при температуре 15 °С и поставили на плиту. Какое количество теплоты пошло на нагревание и кипение воды, если после снятия с плиты в результате испарения в кофейнике объем воды стал на 50 см 3 меньше? (Изменение плотности воды с изменением температуры не учитывать.)

Задача № 10. Какое количество теплоты выделяется при конденсации водяного пара массой 10 кг при температуре 100 °С и охлаждении образовавшейся воды до 20 °С?

Задача № 11. Какое количество теплоты необходимо, чтобы из льда массой 2 кг, взятого при температуре -10 °С, получить пар при 100 °С?

Задача № 12. Сколько энергии понадобится, чтобы полностью испарить 100 грамм ртути, взятой при температуре 27 °С?

Краткая теория для решения Задачи на парообразование и конденсацию.

Это конспект по теме «Задачи на парообразование и конденсацию». Выберите дальнейшие действия:

Источник

Оцените статью