- Вся правда о регулировке яркости светодиодных ламп: диммеры, драйверы и теория Регулировка яркости источников света применяется, для создания комфортной освещенности помещения или рабочего места. Регулировка яркости возможна устройство нескольких цепей, которые включаются отдельными выключателями. В таком случае вы получите ступенчатое изменение освещенности, а также отдельные светящиеся и выключенные лампы, что может вызвать неудобства. Стильные и актуальные дизайнерские решения включают в себя плавную регулировку общей освещенности при условии свечения всех ламп. Это позволяет создать как интимную обстановку для отдыха, так и яркую для торжеств или работы с мелкими деталями. Ранее, когда основными источниками света были лампы накаливания и точечные светильники с галогенными лампами проблем с регулировкой не возникало. Использовался обычный 220В диммер на симисторе (или тиристорах). Который обычно был в виде выключателя, с поворотной ручкой вместо клавиш. С приходом энергосберегающих (компактных люминесцентных ламп), а потом и светодиодных такой подход стал невозможен. В последнее же время подавляющее большинство источников света – это светодиодные светильники и лампочки, а лампы накаливания запрещены для использования в осветительных целях во многих странах. Занятно то, что на упаковке от отечественных ламп накаливания сейчас указывают что-то вроде: «Электрический теплоизлучатель». В этой статье вы узнаете о принципе регулирования яркости светодиодов, а также о том, как это выглядит на практике. Содержание статьи Теория Любой полупроводниковый диод – это электронный прибор, который пропускает ток в одном направлении. При этом протекание тока не имеет линейно зависимости от приложенного напряжения, скорее она напоминает ветвь параболы. Это значит, что когда вы к светодиоду приложите малое напряжение – ток протекать не будет. Ток через него протечет только в том случае, когда напряжение на диоде превысит пороговое значение. Для обычных выпрямительных диодов оно лежит в пределах от 0.3В до 0.8В в зависимости от материала из которого сделан диод. Кремниевые диоды берут на себя около 0.7В, германиевые 0.3В. Диоды Шоттки порядка 0.3В. Светодиод не стал исключением. Пороговое напряжение белого светодиода около 3В, вообще оно зависит от полупроводника из которого он сделан, от этого зависит и цвет его свечения. Так, на красном светодиоде напряжение около 1.7 В. При достижении этого напряжения начнет протекать ток, и светодиод начнет светиться. Ниже вы видите вольтамперную характеристику светодиода. Яркость свечения светодиода зависит от силы тока через него. Это отражено на графике ниже. Яркость идеального теоретического светодиода линейно зависит от тока, но в реальности дела несколько отличаются. Это связано с дифференциальным сопротивлением диода и его тепловыми потерями. Светодиод – прибор, который питается током, а не напряжением. Соответственно, для регулировки его яркости нужно изменять силу тока. Разумеется, что сила тока зависит от приложенного напряжения, но как вы можете судить из первого графика, даже незначительное изменение напряжения влечет за собой несоизмеримое увеличение тока. Поэтому регулирование яркости с помощью простого реостата – занятие бесполезное. В такой схеме, при уменьшении сопротивления реостата светодиод внезапно загорится, а после его яркость незначительно возрастет, далее, при чрезмерном приложенном напряжении, он начнет сильно греется и выйдет из строя. Отсюда выходит задание: Регулировать ток при определенном значении напряжения с незначительным его изменением. Способы регулирования яркости светодиодов: линейные «аналоговые» регуляторы Первое что приходит в голову это использовать биполярный транзистор, ведь его выходной ток (коллектора) зависит от входного тока (базы), включенного по схеме общего коллектора. Мы уже рассматривали их работу в большой статье о биполярных транзисторах. Вы изменяете ток базы изменяя падение напряжения на переходе эмиттер-база с помощью потенциометра R2, резисторы R1 и R3 нужны для ограничения тока при максимально открытом транзисторе рассчитываются исходя из формулы: R=(Uпитания-Uпадения на светодиодах-Uпадения на транзисторе)/Iсвет.ном. Эту схему я проверял, она неплохо регулирует ток через светодиоды и яркость свечения, но заметна некоторая ступенчатость на определенных положениях потенциометра, возможно это связано с тем, что потенциометр был логарифмическим, а возможно из-за того что любой pn-переход транзистора это тот же диод с такой же ВАХ. Лучше для этой задачи подойдет схема стабилизатора тока на регулируемом стабилизаторе LM317, хотя её чаще применяют в роли стабилизатора напряжения. Её можно и использовать для получения фиксированного тока при постоянном напряжении. Это особенно полезно при подключении светодиодов к бортовой сети автомобиля, где напряжение в сети при заглушенном двигателе около 11.7-12В, а при заведенном доходит до 14.7В, разница более чем в 10%. Также отлично работает и при питании от блока питания. Расчёт выходного тока достаточно прост: Получается достаточно компактное решение: Этот способ не отличается высоким КПД, он зависит от разницы напряжений между входом стабилизатора и его выходом. Всё напряжение «сгорает» на LM-ке. Потери мощности здесь определяются по формуле: Чтобы повысить эффективность работы регулятора, нужен кардинально другой подход – импульсный регулятор или ШИМ-регулятор. Способы регулирования яркости: ШИМ-регулировка ШИМ расшифровывается, как «широтно-импульсная модуляция». В её основе лежит включение и выключение питания нагрузки на высокой скорости. Таким образом, мы получаем изменение тока через светодиод, поскольку каждый раз на него подается полное напряжение, необходимое для его открытия. Он быстро включается и отключается на полную яркость, но из-за инерционности зрения мы этого не замечаем и это выглядит как снижение яркости. При таком подходе источник света может выдавать пульсации, не рекомендуется использовать источники света с пульсациями более 10%. Подробные значения для каждого вида помещений описаны в СНИП-23-05-95 (или 2010). Работа под пульсирующим светом вызывает повышенную утомляемость, головные боли, а также может вызвать стробоскопический эффект, когда вращающиеся детали кажутся неподвижными. Это недопустимо при работе на токарных станках, с дрелями и прочим. Схем и вариантов исполнения ШИМ-регуляторов великое множество, поэтому все их перечислять бессмысленно. Простейший вариант – это собрать ШИМ-контроллер на базе микросхемы-таймера NE555. Это популярная микросхема. Ниже вы видите схему такого светодиодного диммера: А вот фактически это одна и та же схема, разница в том, что здесь исключен силовой транзистор и она подходит для регулировки 1-2 маломощных светодиодов с током в пару десятков миллиампер. Также из неё исключен стабилизатор напряжения для 555-микросхемы. Подробнее про широтно-импульсную модуляцию: Как регулировать яркость светодиодных ламп на 220В Ответ на этот вопрос простой: обычные светодиодные лампы практически не регулируются – т.е. никак. Для этого продаются специальные диммируемые светодиодные лампы, об этом написано на упаковке или нарисован значок диммера. Пожалуй, самый широкий модельный ряд диммируемых светодиодных ламп представлен у фирмы GAUSS – разных форм, исполнений и цоколей. Устройство диммируемых светодиодных ламп: Почему нельзя диммировать светодиодные лампы 220В Дело в том, что схема питания обычных светодиодных ламп построена либо на базе балластного (конденсаторного) блока питания. Либо на схеме простейшего импульсного понижающего преобразователя первого рода. 220В диммеры в свою очередь просто регулируют действующее значение напряжения. Различают такие диммеры по фронту работы: 1. Диммеры срезающие передний фронт полуволны (leading edge). Именно такие схемы чаще всего встречаются в бытовых регуляторах. Вот график их выходного напряжения: 2. Диммеры срезающие задний фронт полуволны (Falling Edge). Различные источники утверждают, что такие регуляторы лучше работают как с обычными, так и с диммируемыми светодиодными лампами. Но встречаются они гораздо реже. Обычные светодиодные лампы практически не будут изменять яркость с таким диммером, к тому же это может ускорить их выход из строя. Эффект такой же, как и в схеме с реостатом, приведенной в предыдущем разделе статьи. Стоит отметить, что большинство дешевых регулируемых LED-ламп ведут себя точно также, как и обычные, а стоят дороже. Регулировка яркости светодиодных ламп – рациональное решение 12В Светодиодные лампы на 12В широко распространены в цоколях для точечных светильников, например G4, GX57, G5.3 и другие. Дело в том, что зачастую в этих лампах отсутствует схема питания как таковая. Хотя в некоторых установлен на входе диодный мост и фильтрующий конденсатор, но это не влияет на возможность регулирования. Это значит, что можно регулировать такие лампочки с помощью ШИМ-регулятора. Таким же образом, как и регулируют яркость LED-ленты. Простейший вариант регулятора, вот такой вот на проводках, в магазинах они обычно называются как: «12-24В диммер для светодиодной ленты». Они выдерживают, в зависимости от модели, порядка 10 Ампер. Если вам нужно использовать в красивой форме, т.е. встроить вместо обычного выключателя, то в продаже можно найти такие сенсорные 12В диммеры, или варианты с вращающейся ручкой. Вот пример использования такого решения: Ранее применялись галогеновые лампы на 12В их питали от электронных трансформаторов, и это было отличным решением. 12 вольт – это безопасное напряжение. Чтобы запитать эти лампы на 12В электронный трансформатор не подойдет, нужен блок питания для светодиодных лент. В принципе, переделка освещения с галогеновых на светодиодные лампы в этом и заключается. Заключение Самым разумным решением регулирования яркости светодиодного освещения является использовании 12В ламп или светодиодных лент. При понижении яркости возможно мерцание света, для этого можно попробовать использовать другой драйвер, а если вы делаете шим-регулятор своими руками – увеличить частоту ШИМ. Любите умные гаджеты и DIY? Станьте специалистом в сфере Internet of Things и создайте сеть умных гаджетов! Записывайтесь в онлайн-университет от GeekBrains: Изучить C, механизмы отладки и программирования микроконтроллеров; Получить опыт работы с реальными проектами, в команде и самостоятельно; Получить удостоверение и сертификат, подтверждающие полученные знания. Starter box для первых экспериментов в подарок! После прохождения курса в вашем портфолио будет: метостанция с функцией часов и встроенной игрой, распределенная сеть устройств, устройства регулирования температуры (ПИД-регулятор), устройство контроля влажности воздуха, система умного полива растений, устройство контроля протечки воды. Вы получите диплом о профессиональной переподготовке и электронный сертификат, которые можно добавить в портфолио и показать работодателю. Источник Как увеличить яркость лед ленты Как регулировать яркость светодиодной ленты В процессе эксплуатации светодиодных лент часто возникает необходимость регулировки их яркости – этот процесс называется диммированием. В этой статье мы рассмотрим теоретические основы процесса регулировки яркости светодиодов и проанализируем классификацию современных устройств для реализации процесса диммирования. Понятие цветовой температуры и индекса цветопередачи светодиода Можно ли отрегулировать яркость светодиода, меняя ток, проходящий через светодиод? Нет, изменение тока приведет к изменению цветовой температуры светодиода. Например, белый свет при понижении тока приобретает зеленоватый оттенок. Рассмотрим основные понятия, связанные с цветовой температурой светодиодов. Цветовая температура – это визуальный эффект, который воспринимается человеческим глазом при работе светодиода. Этот параметр показывает, каким мы видим свет – тепло-желтоватым, нейтрально белым или голубовато-холодным. Чтобы обеспечить ту или иную цветовую температуру свечения светодиода, используются различные типы люминофора. От способа его нанесения, его химического состава и толщины слоя зависит цветовая температура и яркость светодиода. Цветовая температура измеряется в Кельвинах (°K) и указывается в справочных таблицах. Чем ниже этот параметр, тем ближе свет к «теплому». Светодиоды подразделяются на несколько групп по цветовой температуре: лампы теплого свечения 2700–3500°K, нейтрального – 3500–5300°K; холодного – 5300–6800°K. Теплый свет используется для освещения жилых помещений, мест отдыха. Нейтральный – для офисов и производственных помещений. Холодные светодиоды применяются преимущественно в качестве аварийного освещения и на особо ответственных рабочих местах. Стоит упомянуть еще один важный параметр, связанный с цветовой температурой, — индекс или коэффициент цветопередачи (color rendering index), характеризующий степень соответствия цвета тела видимому цвету при освещении определенным источником света. Под светом двух светодиодов с одинаковой цветовой температурой предметы в помещении могут иметь различный вид. Индекс светопередачи может варьироваться в пределах 0-100 Ra. Чем выше этот коэффициент, тем более правильно человек воспринимает цвета предметов в свете лампы. По сути, индекс цветопередачи – это показатель качества света. Методы регулировки яркости светодиода Для регулировки яркости светодиодной ленты используются два метода – широтно-импульсная модуляция (ШИМ) и аналоговое управление. Аналоговое диммирование – это поддержание тока светодиода на постоянном уровне. ШИМ-диммирование – управление включением и выключением тока, проходящего через светодиод. Проще говоря, светодиод загорается и гаснет с периодичностью, незаметной для глаза человека. Спектр излучения остается неизменным, поэтому цветовая температура также сохраняется. Рассмотрим суть метода ШИМ (широтно-импульсной модуляции) для регулировки яркости светодиодной ленты. Ток подается на светодиод импульсами частотой от нескольких сотен до нескольких тысяч герц. Временные промежутки между импульсами равны десятым или сотым долям секунды. Для человека эти импульсы практически незаметны, поскольку глаз не способен воспринимать такие мерцания. Свет кажется равномерным и непрерывным. Чтобы светодиодная лента горела ярче, световой поток регулируется в определенном временном периоде. Для ШИМ-регулировки используются специальные устройства, корректирующие частоту импульсов. Изменяется не сам временный интервал импульсов, а длительность положительного импульса. Примечательно, что различные интервалы мерцания светодиода воспринимаются глазом как изменение яркости свечения. Устройства для управления яркостью светодиодной ленты Регулярное появление новых моделей светодиодов и светодиодных лент неразрывно связано с расширением ассортимента всевозможных интегральных схем для управления параметрами яркости освещения. Для реализации методов управления яркостью светодиодной ленты используются различные устройства, которые можно разделить на несколько категорий: механические, электронные, сенсорные, бесконтактные, дистанционные. Перечень основных устройств, применяемых для управления яркостью светодиодной ленты: Стабилизаторы напряжения и линейные регуляторы (имеют низкий КПД, считаются устаревшими и применяются ограниченно). Диммеры – компактные импульсные преобразователи. Драйверы – импульсные источники питания. RGB-усилители – устройства, повышающие мощность RGB-светодиодов. RGB-контроллеры – устройства для управления многоцветными лентами. DMX-контроллеры – сложные профессиональные устройства, разработанные специально для проведения эффектных световых шоу. Современные модели управляются с компьютера с помощью специального ПО или имеют вид пультов с многочисленными кнопками и ручками. Управление устройствами регулировки яркости светодиодных лент Все устройства, регулирующие яркость светодиодных лет, управляются одним из следующих способов: Стационарное управление с помощью кнопок, расположенных на корпусе регулятора. Дистанционное управление с помощью инфракрасного пульта или радиочастотного передатчика. Ethernet, Wi-Fi или Bluetooth модули, позволяющие вести управление с компьютера или смартфона удаленно. Комбинированное управление, обеспечивающее возможность ручной и дистанционной регулировки. Первоначально при появлении импульсных регуляторов их главным недостатком было мерцание света. Поэтому громоздкие и недостаточно эффективные аналоговые устройства находили широчайшее применение и не собирались сдавать свои позиции. Но с появлением более современных приборов с хорошими фильтрами, исключающими видимое мигание света, импульсный метод завоевывает рынок все более активно. Источник
- Как увеличить яркость лед ленты
- Понятие цветовой температуры и индекса цветопередачи светодиода
- Методы регулировки яркости светодиода
- Устройства для управления яркостью светодиодной ленты
- Управление устройствами регулировки яркости светодиодных лент
Вся правда о регулировке яркости светодиодных ламп: диммеры, драйверы и теория
Регулировка яркости источников света применяется, для создания комфортной освещенности помещения или рабочего места. Регулировка яркости возможна устройство нескольких цепей, которые включаются отдельными выключателями. В таком случае вы получите ступенчатое изменение освещенности, а также отдельные светящиеся и выключенные лампы, что может вызвать неудобства.
Стильные и актуальные дизайнерские решения включают в себя плавную регулировку общей освещенности при условии свечения всех ламп. Это позволяет создать как интимную обстановку для отдыха, так и яркую для торжеств или работы с мелкими деталями.
Ранее, когда основными источниками света были лампы накаливания и точечные светильники с галогенными лампами проблем с регулировкой не возникало. Использовался обычный 220В диммер на симисторе (или тиристорах). Который обычно был в виде выключателя, с поворотной ручкой вместо клавиш.
С приходом энергосберегающих (компактных люминесцентных ламп), а потом и светодиодных такой подход стал невозможен. В последнее же время подавляющее большинство источников света – это светодиодные светильники и лампочки, а лампы накаливания запрещены для использования в осветительных целях во многих странах.
Занятно то, что на упаковке от отечественных ламп накаливания сейчас указывают что-то вроде: «Электрический теплоизлучатель».
В этой статье вы узнаете о принципе регулирования яркости светодиодов, а также о том, как это выглядит на практике.
Содержание статьи
Теория
Любой полупроводниковый диод – это электронный прибор, который пропускает ток в одном направлении. При этом протекание тока не имеет линейно зависимости от приложенного напряжения, скорее она напоминает ветвь параболы. Это значит, что когда вы к светодиоду приложите малое напряжение – ток протекать не будет.
Ток через него протечет только в том случае, когда напряжение на диоде превысит пороговое значение. Для обычных выпрямительных диодов оно лежит в пределах от 0.3В до 0.8В в зависимости от материала из которого сделан диод. Кремниевые диоды берут на себя около 0.7В, германиевые 0.3В. Диоды Шоттки порядка 0.3В.
Светодиод не стал исключением. Пороговое напряжение белого светодиода около 3В, вообще оно зависит от полупроводника из которого он сделан, от этого зависит и цвет его свечения. Так, на красном светодиоде напряжение около 1.7 В. При достижении этого напряжения начнет протекать ток, и светодиод начнет светиться. Ниже вы видите вольтамперную характеристику светодиода.
Яркость свечения светодиода зависит от силы тока через него. Это отражено на графике ниже.
Яркость идеального теоретического светодиода линейно зависит от тока, но в реальности дела несколько отличаются. Это связано с дифференциальным сопротивлением диода и его тепловыми потерями.
Светодиод – прибор, который питается током, а не напряжением. Соответственно, для регулировки его яркости нужно изменять силу тока.
Разумеется, что сила тока зависит от приложенного напряжения, но как вы можете судить из первого графика, даже незначительное изменение напряжения влечет за собой несоизмеримое увеличение тока.
Поэтому регулирование яркости с помощью простого реостата – занятие бесполезное. В такой схеме, при уменьшении сопротивления реостата светодиод внезапно загорится, а после его яркость незначительно возрастет, далее, при чрезмерном приложенном напряжении, он начнет сильно греется и выйдет из строя.
Отсюда выходит задание: Регулировать ток при определенном значении напряжения с незначительным его изменением.
Способы регулирования яркости светодиодов: линейные «аналоговые» регуляторы
Первое что приходит в голову это использовать биполярный транзистор, ведь его выходной ток (коллектора) зависит от входного тока (базы), включенного по схеме общего коллектора. Мы уже рассматривали их работу в большой статье о биполярных транзисторах.
Вы изменяете ток базы изменяя падение напряжения на переходе эмиттер-база с помощью потенциометра R2, резисторы R1 и R3 нужны для ограничения тока при максимально открытом транзисторе рассчитываются исходя из формулы:
R=(Uпитания-Uпадения на светодиодах-Uпадения на транзисторе)/Iсвет.ном.
Эту схему я проверял, она неплохо регулирует ток через светодиоды и яркость свечения, но заметна некоторая ступенчатость на определенных положениях потенциометра, возможно это связано с тем, что потенциометр был логарифмическим, а возможно из-за того что любой pn-переход транзистора это тот же диод с такой же ВАХ.
Лучше для этой задачи подойдет схема стабилизатора тока на регулируемом стабилизаторе LM317, хотя её чаще применяют в роли стабилизатора напряжения.
Её можно и использовать для получения фиксированного тока при постоянном напряжении. Это особенно полезно при подключении светодиодов к бортовой сети автомобиля, где напряжение в сети при заглушенном двигателе около 11.7-12В, а при заведенном доходит до 14.7В, разница более чем в 10%. Также отлично работает и при питании от блока питания.
Расчёт выходного тока достаточно прост:
Получается достаточно компактное решение:
Этот способ не отличается высоким КПД, он зависит от разницы напряжений между входом стабилизатора и его выходом. Всё напряжение «сгорает» на LM-ке. Потери мощности здесь определяются по формуле:
Чтобы повысить эффективность работы регулятора, нужен кардинально другой подход – импульсный регулятор или ШИМ-регулятор.
Способы регулирования яркости: ШИМ-регулировка
ШИМ расшифровывается, как «широтно-импульсная модуляция». В её основе лежит включение и выключение питания нагрузки на высокой скорости. Таким образом, мы получаем изменение тока через светодиод, поскольку каждый раз на него подается полное напряжение, необходимое для его открытия. Он быстро включается и отключается на полную яркость, но из-за инерционности зрения мы этого не замечаем и это выглядит как снижение яркости.
При таком подходе источник света может выдавать пульсации, не рекомендуется использовать источники света с пульсациями более 10%. Подробные значения для каждого вида помещений описаны в СНИП-23-05-95 (или 2010).
Работа под пульсирующим светом вызывает повышенную утомляемость, головные боли, а также может вызвать стробоскопический эффект, когда вращающиеся детали кажутся неподвижными. Это недопустимо при работе на токарных станках, с дрелями и прочим.
Схем и вариантов исполнения ШИМ-регуляторов великое множество, поэтому все их перечислять бессмысленно. Простейший вариант – это собрать ШИМ-контроллер на базе микросхемы-таймера NE555. Это популярная микросхема. Ниже вы видите схему такого светодиодного диммера:
А вот фактически это одна и та же схема, разница в том, что здесь исключен силовой транзистор и она подходит для регулировки 1-2 маломощных светодиодов с током в пару десятков миллиампер. Также из неё исключен стабилизатор напряжения для 555-микросхемы.
Подробнее про широтно-импульсную модуляцию:
Как регулировать яркость светодиодных ламп на 220В
Ответ на этот вопрос простой: обычные светодиодные лампы практически не регулируются – т.е. никак. Для этого продаются специальные диммируемые светодиодные лампы, об этом написано на упаковке или нарисован значок диммера.
Пожалуй, самый широкий модельный ряд диммируемых светодиодных ламп представлен у фирмы GAUSS – разных форм, исполнений и цоколей.
Устройство диммируемых светодиодных ламп:
Почему нельзя диммировать светодиодные лампы 220В
Дело в том, что схема питания обычных светодиодных ламп построена либо на базе балластного (конденсаторного) блока питания. Либо на схеме простейшего импульсного понижающего преобразователя первого рода. 220В диммеры в свою очередь просто регулируют действующее значение напряжения.
Различают такие диммеры по фронту работы:
1. Диммеры срезающие передний фронт полуволны (leading edge). Именно такие схемы чаще всего встречаются в бытовых регуляторах. Вот график их выходного напряжения:
2. Диммеры срезающие задний фронт полуволны (Falling Edge). Различные источники утверждают, что такие регуляторы лучше работают как с обычными, так и с диммируемыми светодиодными лампами. Но встречаются они гораздо реже.
Обычные светодиодные лампы практически не будут изменять яркость с таким диммером, к тому же это может ускорить их выход из строя. Эффект такой же, как и в схеме с реостатом, приведенной в предыдущем разделе статьи.
Стоит отметить, что большинство дешевых регулируемых LED-ламп ведут себя точно также, как и обычные, а стоят дороже.
Регулировка яркости светодиодных ламп – рациональное решение 12В
Светодиодные лампы на 12В широко распространены в цоколях для точечных светильников, например G4, GX57, G5.3 и другие. Дело в том, что зачастую в этих лампах отсутствует схема питания как таковая. Хотя в некоторых установлен на входе диодный мост и фильтрующий конденсатор, но это не влияет на возможность регулирования.
Это значит, что можно регулировать такие лампочки с помощью ШИМ-регулятора.
Таким же образом, как и регулируют яркость LED-ленты. Простейший вариант регулятора, вот такой вот на проводках, в магазинах они обычно называются как: «12-24В диммер для светодиодной ленты».
Они выдерживают, в зависимости от модели, порядка 10 Ампер. Если вам нужно использовать в красивой форме, т.е. встроить вместо обычного выключателя, то в продаже можно найти такие сенсорные 12В диммеры, или варианты с вращающейся ручкой.
Вот пример использования такого решения:
Ранее применялись галогеновые лампы на 12В их питали от электронных трансформаторов, и это было отличным решением. 12 вольт – это безопасное напряжение. Чтобы запитать эти лампы на 12В электронный трансформатор не подойдет, нужен блок питания для светодиодных лент. В принципе, переделка освещения с галогеновых на светодиодные лампы в этом и заключается.
Заключение
Самым разумным решением регулирования яркости светодиодного освещения является использовании 12В ламп или светодиодных лент. При понижении яркости возможно мерцание света, для этого можно попробовать использовать другой драйвер, а если вы делаете шим-регулятор своими руками – увеличить частоту ШИМ.
Любите умные гаджеты и DIY? Станьте специалистом в сфере Internet of Things и создайте сеть умных гаджетов!
Записывайтесь в онлайн-университет от GeekBrains:
Изучить C, механизмы отладки и программирования микроконтроллеров;
Получить опыт работы с реальными проектами, в команде и самостоятельно;
Получить удостоверение и сертификат, подтверждающие полученные знания.
Starter box для первых экспериментов в подарок!
После прохождения курса в вашем портфолио будет: метостанция с функцией часов и встроенной игрой, распределенная сеть устройств, устройства регулирования температуры (ПИД-регулятор), устройство контроля влажности воздуха, система умного полива растений, устройство контроля протечки воды.
Вы получите диплом о профессиональной переподготовке и электронный сертификат, которые можно добавить в портфолио и показать работодателю.
Источник
Как увеличить яркость лед ленты
Как регулировать яркость светодиодной ленты
В процессе эксплуатации светодиодных лент часто возникает необходимость регулировки их яркости – этот процесс называется диммированием. В этой статье мы рассмотрим теоретические основы процесса регулировки яркости светодиодов и проанализируем классификацию современных устройств для реализации процесса диммирования.
Понятие цветовой температуры и индекса цветопередачи светодиода
Можно ли отрегулировать яркость светодиода, меняя ток, проходящий через светодиод? Нет, изменение тока приведет к изменению цветовой температуры светодиода. Например, белый свет при понижении тока приобретает зеленоватый оттенок. Рассмотрим основные понятия, связанные с цветовой температурой светодиодов. Цветовая температура – это визуальный эффект, который воспринимается человеческим глазом при работе светодиода. Этот параметр показывает, каким мы видим свет – тепло-желтоватым, нейтрально белым или голубовато-холодным. Чтобы обеспечить ту или иную цветовую температуру свечения светодиода, используются различные типы люминофора. От способа его нанесения, его химического состава и толщины слоя зависит цветовая температура и яркость светодиода.
Цветовая температура измеряется в Кельвинах (°K) и указывается в справочных таблицах. Чем ниже этот параметр, тем ближе свет к «теплому». Светодиоды подразделяются на несколько групп по цветовой температуре: лампы теплого свечения 2700–3500°K, нейтрального – 3500–5300°K; холодного – 5300–6800°K. Теплый свет используется для освещения жилых помещений, мест отдыха. Нейтральный – для офисов и производственных помещений. Холодные светодиоды применяются преимущественно в качестве аварийного освещения и на особо ответственных рабочих местах.
Стоит упомянуть еще один важный параметр, связанный с цветовой температурой, — индекс или коэффициент цветопередачи (color rendering index), характеризующий степень соответствия цвета тела видимому цвету при освещении определенным источником света. Под светом двух светодиодов с одинаковой цветовой температурой предметы в помещении могут иметь различный вид. Индекс светопередачи может варьироваться в пределах 0-100 Ra. Чем выше этот коэффициент, тем более правильно человек воспринимает цвета предметов в свете лампы. По сути, индекс цветопередачи – это показатель качества света.
Методы регулировки яркости светодиода
Для регулировки яркости светодиодной ленты используются два метода – широтно-импульсная модуляция (ШИМ) и аналоговое управление.
- Аналоговое диммирование – это поддержание тока светодиода на постоянном уровне.
- ШИМ-диммирование – управление включением и выключением тока, проходящего через светодиод. Проще говоря, светодиод загорается и гаснет с периодичностью, незаметной для глаза человека. Спектр излучения остается неизменным, поэтому цветовая температура также сохраняется.
Рассмотрим суть метода ШИМ (широтно-импульсной модуляции) для регулировки яркости светодиодной ленты. Ток подается на светодиод импульсами частотой от нескольких сотен до нескольких тысяч герц. Временные промежутки между импульсами равны десятым или сотым долям секунды. Для человека эти импульсы практически незаметны, поскольку глаз не способен воспринимать такие мерцания. Свет кажется равномерным и непрерывным. Чтобы светодиодная лента горела ярче, световой поток регулируется в определенном временном периоде. Для ШИМ-регулировки используются специальные устройства, корректирующие частоту импульсов. Изменяется не сам временный интервал импульсов, а длительность положительного импульса. Примечательно, что различные интервалы мерцания светодиода воспринимаются глазом как изменение яркости свечения.
Устройства для управления яркостью светодиодной ленты
Регулярное появление новых моделей светодиодов и светодиодных лент неразрывно связано с расширением ассортимента всевозможных интегральных схем для управления параметрами яркости освещения. Для реализации методов управления яркостью светодиодной ленты используются различные устройства, которые можно разделить на несколько категорий: механические, электронные, сенсорные, бесконтактные, дистанционные.
Перечень основных устройств, применяемых для управления яркостью светодиодной ленты:
- Стабилизаторы напряжения и линейные регуляторы (имеют низкий КПД, считаются устаревшими и применяются ограниченно).
- Диммеры – компактные импульсные преобразователи.
- Драйверы – импульсные источники питания.
- RGB-усилители – устройства, повышающие мощность RGB-светодиодов.
- RGB-контроллеры – устройства для управления многоцветными лентами.
- DMX-контроллеры – сложные профессиональные устройства, разработанные специально для проведения эффектных световых шоу. Современные модели управляются с компьютера с помощью специального ПО или имеют вид пультов с многочисленными кнопками и ручками.
Управление устройствами регулировки яркости светодиодных лент
Все устройства, регулирующие яркость светодиодных лет, управляются одним из следующих способов:
- Стационарное управление с помощью кнопок, расположенных на корпусе регулятора.
- Дистанционное управление с помощью инфракрасного пульта или радиочастотного передатчика.
- Ethernet, Wi-Fi или Bluetooth модули, позволяющие вести управление с компьютера или смартфона удаленно.
- Комбинированное управление, обеспечивающее возможность ручной и дистанционной регулировки.
Первоначально при появлении импульсных регуляторов их главным недостатком было мерцание света. Поэтому громоздкие и недостаточно эффективные аналоговые устройства находили широчайшее применение и не собирались сдавать свои позиции. Но с появлением более современных приборов с хорошими фильтрами, исключающими видимое мигание света, импульсный метод завоевывает рынок все более активно.
Источник